{"version":3,"sources":["webpack:///./src/views/product/pictureAnalysis.vue?f021","webpack:///src/views/product/pictureAnalysis.vue","webpack:///./src/views/product/pictureAnalysis.vue?102d","webpack:///./src/views/product/pictureAnalysis.vue","webpack:///./src/assets/product/pictureAnalysis/2.png","webpack:///./src/assets/product/pictureAnalysis/11.png","webpack:///./src/assets/product/pictureAnalysis/10.png","webpack:///./src/assets/product/pictureAnalysis/7.png","webpack:///./src/assets/product/pictureAnalysis/4.png","webpack:///./src/assets/product/pictureAnalysis/8.png","webpack:///./src/assets/product/pictureAnalysis/6.png","webpack:///./src/views/product/pictureAnalysis.vue?ddfd","webpack:///./src/assets/product/pictureAnalysis/9.png","webpack:///./src/assets/product/pictureAnalysis/5.png","webpack:///./src/assets/product/pictureAnalysis/3.png","webpack:///./src/assets/product/pictureAnalysis/1.png"],"names":["render","_vm","this","_h","$createElement","_self","_c","_m","staticRenderFns","staticClass","attrs","_v","data","mounted","methods","component","module","exports"],"mappings":"kJAAA,IAAIA,EAAS,WAAa,IAAIC,EAAIC,KAASC,EAAGF,EAAIG,eAAsBH,EAAII,MAAMC,GAAO,OAAOL,EAAIM,GAAG,IACnGC,EAAkB,CAAC,WAAa,IAAIP,EAAIC,KAASC,EAAGF,EAAIG,eAAmBE,EAAGL,EAAII,MAAMC,IAAIH,EAAG,OAAOG,EAAG,MAAM,CAACG,YAAY,mBAAmB,CAACH,EAAG,MAAM,CAACG,YAAY,YAAYC,MAAM,CAAC,IAAM,EAAQ,WAAiDJ,EAAG,MAAM,CAACG,YAAY,SAAS,CAACH,EAAG,MAAM,CAACG,YAAY,SAAS,CAACR,EAAIU,GAAG,YAAYL,EAAG,MAAM,CAACG,YAAY,aAAa,CAACR,EAAIU,GAAG,4LAA4LL,EAAG,MAAM,CAACG,YAAY,eAAe,CAACH,EAAG,MAAM,CAACG,YAAY,SAAS,CAACR,EAAIU,GAAG,WAAWL,EAAG,MAAM,CAACG,YAAY,sBAAsB,CAACH,EAAG,MAAM,CAACG,YAAY,sBAAsB,CAACH,EAAG,MAAM,CAACG,YAAY,uBAAuB,CAACH,EAAG,MAAM,CAACI,MAAM,CAAC,IAAM,EAAQ,WAAiDJ,EAAG,MAAM,CAACG,YAAY,sBAAsB,CAACR,EAAIU,GAAG,YAAYL,EAAG,MAAM,CAACG,YAAY,QAAQ,CAACR,EAAIU,GAAG,oEAAoEL,EAAG,MAAM,CAACG,YAAY,sBAAsB,CAACH,EAAG,MAAM,CAACG,YAAY,uBAAuB,CAACH,EAAG,MAAM,CAACI,MAAM,CAAC,IAAM,EAAQ,WAAiDJ,EAAG,MAAM,CAACG,YAAY,sBAAsB,CAACR,EAAIU,GAAG,YAAYL,EAAG,MAAM,CAACG,YAAY,QAAQ,CAACR,EAAIU,GAAG,oDAAoDL,EAAG,MAAM,CAACG,YAAY,sBAAsB,CAACH,EAAG,MAAM,CAACG,YAAY,uBAAuB,CAACH,EAAG,MAAM,CAACI,MAAM,CAAC,IAAM,EAAQ,WAAiDJ,EAAG,MAAM,CAACG,YAAY,sBAAsB,CAACR,EAAIU,GAAG,YAAYL,EAAG,MAAM,CAACG,YAAY,QAAQ,CAACR,EAAIU,GAAG,qDAAqDL,EAAG,MAAM,CAACG,YAAY,sBAAsB,CAACH,EAAG,MAAM,CAACG,YAAY,sBAAsB,CAACH,EAAG,MAAM,CAACG,YAAY,uBAAuB,CAACH,EAAG,MAAM,CAACI,MAAM,CAAC,IAAM,EAAQ,WAAiDJ,EAAG,MAAM,CAACG,YAAY,sBAAsB,CAACR,EAAIU,GAAG,YAAYL,EAAG,MAAM,CAACG,YAAY,QAAQ,CAACR,EAAIU,GAAG,oDAAoDL,EAAG,MAAM,CAACG,YAAY,sBAAsB,CAACH,EAAG,MAAM,CAACG,YAAY,uBAAuB,CAACH,EAAG,MAAM,CAACI,MAAM,CAAC,IAAM,EAAQ,WAAiDJ,EAAG,MAAM,CAACG,YAAY,sBAAsB,CAACR,EAAIU,GAAG,eAAeL,EAAG,MAAM,CAACG,YAAY,QAAQ,CAACR,EAAIU,GAAG,qDAAqDL,EAAG,MAAM,CAACG,YAAY,sBAAsB,CAACH,EAAG,MAAM,CAACG,YAAY,uBAAuB,CAACH,EAAG,MAAM,CAACI,MAAM,CAAC,IAAM,EAAQ,WAAiDJ,EAAG,MAAM,CAACG,YAAY,sBAAsB,CAACR,EAAIU,GAAG,cAAcL,EAAG,MAAM,CAACG,YAAY,QAAQ,CAACR,EAAIU,GAAG,gEAAgEL,EAAG,MAAM,CAACG,YAAY,kBAAkB,CAACH,EAAG,MAAM,CAACG,YAAY,SAAS,CAACR,EAAIU,GAAG,gBAAgBL,EAAG,MAAM,CAACG,YAAY,sBAAsB,CAACH,EAAG,MAAM,CAACG,YAAY,sBAAsB,CAACH,EAAG,MAAM,CAACG,YAAY,uBAAuB,CAACH,EAAG,MAAM,CAACI,MAAM,CAAC,IAAM,EAAQ,WAAiDJ,EAAG,MAAM,CAACG,YAAY,sBAAsB,CAACR,EAAIU,GAAG,YAAYL,EAAG,MAAM,CAACG,YAAY,QAAQ,CAACR,EAAIU,GAAG,uEAAuEL,EAAG,MAAM,CAACG,YAAY,sBAAsB,CAACH,EAAG,MAAM,CAACG,YAAY,uBAAuB,CAACH,EAAG,MAAM,CAACI,MAAM,CAAC,IAAM,EAAQ,WAAiDJ,EAAG,MAAM,CAACG,YAAY,sBAAsB,CAACR,EAAIU,GAAG,YAAYL,EAAG,MAAM,CAACG,YAAY,QAAQ,CAACR,EAAIU,GAAG,yEAAyEL,EAAG,MAAM,CAACG,YAAY,sBAAsB,CAACH,EAAG,MAAM,CAACG,YAAY,uBAAuB,CAACH,EAAG,MAAM,CAACI,MAAM,CAAC,IAAM,EAAQ,WAAkDJ,EAAG,MAAM,CAACG,YAAY,sBAAsB,CAACR,EAAIU,GAAG,YAAYL,EAAG,MAAM,CAACG,YAAY,QAAQ,CAACR,EAAIU,GAAG,sEAAsEL,EAAG,MAAM,CAACG,YAAY,cAAc,CAACH,EAAG,MAAM,CAACG,YAAY,SAAS,CAACR,EAAIU,GAAG,UAAUL,EAAG,MAAM,CAACG,YAAY,kBAAkB,CAACH,EAAG,MAAM,CAACG,YAAY,mBAAmB,CAACR,EAAIU,GAAG,gBAAgBL,EAAG,MAAM,CAACG,YAAY,kBAAkB,CAACR,EAAIU,GAAG,gGAAgGL,EAAG,MAAM,CAACG,YAAY,iBAAiB,CAACH,EAAG,MAAM,CAACI,MAAM,CAAC,IAAM,EAAQ,qBC4HvtI,GACEE,KADF,WAEI,MAAO,IAITC,QANF,aASEC,QAAF,ICtIwW,I,wBCQpWC,EAAY,eACd,EACAf,EACAQ,GACA,EACA,KACA,WACA,MAIa,aAAAO,E,8BCnBfC,EAAOC,QAAU,kmE,uBCAjBD,EAAOC,QAAU,IAA0B,8B,qBCA3CD,EAAOC,QAAU,spK,qBCAjBD,EAAOC,QAAU,s2H,qBCAjBD,EAAOC,QAAU,khI,oBCAjBD,EAAOC,QAAU,IAA0B,6B,qBCA3CD,EAAOC,QAAU,05J,kCCAjB,W,uBCAAD,EAAOC,QAAU,IAA0B,6B,mBCA3CD,EAAOC,QAAU,0mC,qBCAjBD,EAAOC,QAAU,IAA0B,6B,qBCA3CD,EAAOC,QAAU,IAA0B","file":"static/js/chunk-0113abc0.d3c6bc56.js","sourcesContent":["var render = function () {var _vm=this;var _h=_vm.$createElement;var _c=_vm._self._c||_h;return _vm._m(0)}\nvar staticRenderFns = [function () {var _vm=this;var _h=_vm.$createElement;var _c=_vm._self._c||_h;return _c('div',{staticClass:\"pictureAnalysis\"},[_c('img',{staticClass:\"headerimg\",attrs:{\"src\":require(\"../../assets/product/pictureAnalysis/1.png\")}}),_c('div',{staticClass:\"serve\"},[_c('div',{staticClass:\"title\"},[_vm._v(\"图像分析简介\")]),_c('div',{staticClass:\"serveinfo\"},[_vm._v(\" 邦伲德图像分析基于深度学习等人工智能技术和海量训练数据,提供综合性的图像智能服务,包含图像理解(解析图像中的场景、物品、人物、动物等)、图像处理(对图像进行裁剪、美化)、图像质量评估(分析图像视觉质量)等。图像分析所使用的算法,广泛应用于邦伲德内部各个产品,应用场景包含相册、信息流、社交、广告等,每天分析、处理海量图片,可以大幅提升各类产品的体验、效率。 \")])]),_c('div',{staticClass:\"subfunction\"},[_c('div',{staticClass:\"title\"},[_vm._v(\"产品子功能\")]),_c('div',{staticClass:\"characteristiclist\"},[_c('div',{staticClass:\"characteristicinfo\"},[_c('div',{staticClass:\"characteristicheard\"},[_c('img',{attrs:{\"src\":require(\"../../assets/product/pictureAnalysis/2.png\")}}),_c('div',{staticClass:\"characteristictext\"},[_vm._v(\"图像标签\")])]),_c('div',{staticClass:\"text\"},[_vm._v(\" 可以识别图片中的场景、物品、人物等信息,可用于相册分类、信息流内容推荐、广告推荐、视频内容理解、拍照识图等各种场景。 \")])]),_c('div',{staticClass:\"characteristicinfo\"},[_c('div',{staticClass:\"characteristicheard\"},[_c('img',{attrs:{\"src\":require(\"../../assets/product/pictureAnalysis/3.png\")}}),_c('div',{staticClass:\"characteristictext\"},[_vm._v(\"商品识别\")])]),_c('div',{staticClass:\"text\"},[_vm._v(\" 涵盖25个大类、数百个细分类别,包括电商、广告场景下的常见商品,并输出商品所在坐标。 \")])]),_c('div',{staticClass:\"characteristicinfo\"},[_c('div',{staticClass:\"characteristicheard\"},[_c('img',{attrs:{\"src\":require(\"../../assets/product/pictureAnalysis/4.png\")}}),_c('div',{staticClass:\"characteristictext\"},[_vm._v(\"车辆识别\")])]),_c('div',{staticClass:\"text\"},[_vm._v(\" 可以精准识别图片中的车辆坐标、品牌、车型、年款、颜色等,基本覆盖市面可见的乘用车。 \")])])]),_c('div',{staticClass:\"characteristiclist\"},[_c('div',{staticClass:\"characteristicinfo\"},[_c('div',{staticClass:\"characteristicheard\"},[_c('img',{attrs:{\"src\":require(\"../../assets/product/pictureAnalysis/5.png\")}}),_c('div',{staticClass:\"characteristictext\"},[_vm._v(\"智能裁剪\")])]),_c('div',{staticClass:\"text\"},[_vm._v(\" 输出图片和指定的裁剪比例,可将不同尺寸、比例的图片,快速适配不同平台、展示位的要求。 \")])]),_c('div',{staticClass:\"characteristicinfo\"},[_c('div',{staticClass:\"characteristicheard\"},[_c('img',{attrs:{\"src\":require(\"../../assets/product/pictureAnalysis/6.png\")}}),_c('div',{staticClass:\"characteristictext\"},[_vm._v(\"图像清晰度增强\")])]),_c('div',{staticClass:\"text\"},[_vm._v(\" 解决因为拍摄、滤镜、压缩导致的噪点和模糊等问题,可用于网络图片优化、相册旧照片美化等。 \")])]),_c('div',{staticClass:\"characteristicinfo\"},[_c('div',{staticClass:\"characteristicheard\"},[_c('img',{attrs:{\"src\":require(\"../../assets/product/pictureAnalysis/7.png\")}}),_c('div',{staticClass:\"characteristictext\"},[_vm._v(\"图像质量评估\")])]),_c('div',{staticClass:\"text\"},[_vm._v(\" 评估输入图片在视觉上的清晰度、美观度评分,广泛应用于文章封面、视频封面、相册图片去重、低质量图片过滤等。 \")])])]),_c('div',{staticClass:\"characteristic\"},[_c('div',{staticClass:\"title\"},[_vm._v(\"邦伲德图像分析的特性\")]),_c('div',{staticClass:\"characteristiclist\"},[_c('div',{staticClass:\"characteristicinfo\"},[_c('div',{staticClass:\"characteristicheard\"},[_c('img',{attrs:{\"src\":require(\"../../assets/product/pictureAnalysis/8.png\")}}),_c('div',{staticClass:\"characteristictext\"},[_vm._v(\"准确率高\")])]),_c('div',{staticClass:\"text\"},[_vm._v(\" 基于邦伲德多项行业领先的人工智能技术,支持数千个标签,可以实现一级标签平均精确率95%以上,二级标签平均精确率90%以上。 \")])]),_c('div',{staticClass:\"characteristicinfo\"},[_c('div',{staticClass:\"characteristicheard\"},[_c('img',{attrs:{\"src\":require(\"../../assets/product/pictureAnalysis/9.png\")}}),_c('div',{staticClass:\"characteristictext\"},[_vm._v(\"能力丰富\")])]),_c('div',{staticClass:\"text\"},[_vm._v(\" 长期为邦伲德各业务提供智能图像技术支持,积累了丰富、可靠的系列能力,会持续提供各种图像标签、物体识别、图像处理、图像审核服务。 \")])]),_c('div',{staticClass:\"characteristicinfo\"},[_c('div',{staticClass:\"characteristicheard\"},[_c('img',{attrs:{\"src\":require(\"../../assets/product/pictureAnalysis/10.png\")}}),_c('div',{staticClass:\"characteristictext\"},[_vm._v(\"拓展性高\")])]),_c('div',{staticClass:\"text\"},[_vm._v(\" 基于智能的深度学习算法,具备迁移学习能力,可以通过不断的训练使识别变得更智能,并且可以快速迭代以适应各种新场景。 \")])])])]),_c('div',{staticClass:\"adhibition\"},[_c('div',{staticClass:\"title\"},[_vm._v(\"应用场景\")]),_c('div',{staticClass:\"adhibitioninfo\"},[_c('div',{staticClass:\"adhibitiontitle\"},[_vm._v(\" 商业广告精准投放 \")]),_c('div',{staticClass:\"adhibitiontext\"},[_vm._v(\" 随着智能手机的全面普及,用户拍摄和存储照片的数量越来越多,大量的照片管理起来效率低下,时间成本高。图片标签可以批量读取照片的内容信息,按照场景、人物等实现相册智能分类管理。 \")])]),_c('div',{staticClass:\"adhibitionimg\"},[_c('img',{attrs:{\"src\":require(\"../../assets/product/pictureAnalysis/11.png\")}})])])])])}]\n\nexport { render, staticRenderFns }","\r\n \r\n\t\r\n\t\r\n\t\t图像分析简介\r\n\t\t\r\n\t\t\t邦伲德图像分析基于深度学习等人工智能技术和海量训练数据,提供综合性的图像智能服务,包含图像理解(解析图像中的场景、物品、人物、动物等)、图像处理(对图像进行裁剪、美化)、图像质量评估(分析图像视觉质量)等。图像分析所使用的算法,广泛应用于邦伲德内部各个产品,应用场景包含相册、信息流、社交、广告等,每天分析、处理海量图片,可以大幅提升各类产品的体验、效率。\r\n\t\t\r\n\t\r\n\t\r\n\t\r\n\t\t产品子功能\r\n\t\t\r\n\t\t\t\r\n\t\t\t\t\r\n\t\t\t\t\t\r\n\t\t\t\t\t图像标签\r\n\t\t\t\t\r\n\t\t\t\t\r\n\t\t\t\t\t可以识别图片中的场景、物品、人物等信息,可用于相册分类、信息流内容推荐、广告推荐、视频内容理解、拍照识图等各种场景。\r\n\t\t\t\t\r\n\t\t\t\r\n\t\t\t\r\n\t\t\t\t\r\n\t\t\t\t\t\r\n\t\t\t\t\t商品识别\r\n\t\t\t\t\r\n\t\t\t\t\r\n\t\t\t\t\t涵盖25个大类、数百个细分类别,包括电商、广告场景下的常见商品,并输出商品所在坐标。\r\n\t\t\t\t\r\n\t\t\t\r\n\t\t\t\r\n\t\t\t\t\r\n\t\t\t\t\t\r\n\t\t\t\t\t车辆识别\r\n\t\t\t\t\r\n\t\t\t\t\r\n\t\t\t\t\t可以精准识别图片中的车辆坐标、品牌、车型、年款、颜色等,基本覆盖市面可见的乘用车。\r\n\t\t\t\t\r\n\t\t\t\r\n\t\t\r\n\t\t\r\n\t\t\r\n\t\t\t\r\n\t\t\t\t\r\n\t\t\t\t\t\r\n\t\t\t\t\t智能裁剪\r\n\t\t\t\t\r\n\t\t\t\t\r\n\t\t\t\t\t输出图片和指定的裁剪比例,可将不同尺寸、比例的图片,快速适配不同平台、展示位的要求。\r\n\t\t\t\t\r\n\t\t\t\r\n\t\t\t\r\n\t\t\t\t\r\n\t\t\t\t\t\r\n\t\t\t\t\t图像清晰度增强\r\n\t\t\t\t\r\n\t\t\t\t\r\n\t\t\t\t\t解决因为拍摄、滤镜、压缩导致的噪点和模糊等问题,可用于网络图片优化、相册旧照片美化等。\r\n\t\t\t\t\r\n\t\t\t\r\n\t\t\t\r\n\t\t\t\t\r\n\t\t\t\t\t\r\n\t\t\t\t\t图像质量评估\r\n\t\t\t\t\r\n\t\t\t\t\r\n\t\t\t\t\t评估输入图片在视觉上的清晰度、美观度评分,广泛应用于文章封面、视频封面、相册图片去重、低质量图片过滤等。\r\n\t\t\t\t\r\n\t\t\t\r\n\t\t\r\n\t\t\r\n\t\t\r\n\t\t\t邦伲德图像分析的特性\r\n\t\t\t\r\n\t\t\t\r\n\t\t\t\t\r\n\t\t\t\t\t\r\n\t\t\t\t\t\t\r\n\t\t\t\t\t\t准确率高\r\n\t\t\t\t\t\r\n\t\t\t\t\t\r\n\t\t\t\t\t\t基于邦伲德多项行业领先的人工智能技术,支持数千个标签,可以实现一级标签平均精确率95%以上,二级标签平均精确率90%以上。 \r\n\t\t\t\t\t\r\n\t\t\t\t\r\n\t\t\t\t\r\n\t\t\t\t\t\r\n\t\t\t\t\t\t\r\n\t\t\t\t\t\t能力丰富\r\n\t\t\t\t\t\r\n\t\t\t\t\t\r\n\t\t\t\t\t\t长期为邦伲德各业务提供智能图像技术支持,积累了丰富、可靠的系列能力,会持续提供各种图像标签、物体识别、图像处理、图像审核服务。 \r\n\t\t\t\t\t\r\n\t\t\t\t\r\n\t\t\t\t\r\n\t\t\t\t\t\r\n\t\t\t\t\t\t\r\n\t\t\t\t\t\t拓展性高\r\n\t\t\t\t\t\r\n\t\t\t\t\t\r\n\t\t\t\t\t\t基于智能的深度学习算法,具备迁移学习能力,可以通过不断的训练使识别变得更智能,并且可以快速迭代以适应各种新场景。 \r\n\t\t\t\t\t\r\n\t\t\t\t\r\n\t\t\t\r\n\t\t\r\n\t\t\r\n\t\t\r\n\t\t\t应用场景\r\n\t\t\t\r\n\t\t\t\t\r\n\t\t\t\t\t商业广告精准投放\r\n\t\t\t\t\r\n\t\t\t\t\r\n\t\t\t\t\t随着智能手机的全面普及,用户拍摄和存储照片的数量越来越多,大量的照片管理起来效率低下,时间成本高。图片标签可以批量读取照片的内容信息,按照场景、人物等实现相册智能分类管理。\r\n\t\t\t\t\r\n\t\t\t\r\n\t\t\t\r\n\t\t\t\t\r\n\t\t\t\r\n\t\t\r\n\t\r\n \r\n\r\n\r\n\r\n\r\n\r\n","import mod from \"-!../../../node_modules/cache-loader/dist/cjs.js??ref--12-0!../../../node_modules/thread-loader/dist/cjs.js!../../../node_modules/babel-loader/lib/index.js!../../../node_modules/cache-loader/dist/cjs.js??ref--0-0!../../../node_modules/vue-loader/lib/index.js??vue-loader-options!./pictureAnalysis.vue?vue&type=script&lang=js&\"; export default mod; export * from \"-!../../../node_modules/cache-loader/dist/cjs.js??ref--12-0!../../../node_modules/thread-loader/dist/cjs.js!../../../node_modules/babel-loader/lib/index.js!../../../node_modules/cache-loader/dist/cjs.js??ref--0-0!../../../node_modules/vue-loader/lib/index.js??vue-loader-options!./pictureAnalysis.vue?vue&type=script&lang=js&\"","import { render, staticRenderFns } from \"./pictureAnalysis.vue?vue&type=template&id=7ac3d989&scoped=true&\"\nimport script from \"./pictureAnalysis.vue?vue&type=script&lang=js&\"\nexport * from \"./pictureAnalysis.vue?vue&type=script&lang=js&\"\nimport style0 from \"./pictureAnalysis.vue?vue&type=style&index=0&id=7ac3d989&scoped=true&lang=less&\"\n\n\n/* normalize component */\nimport normalizer from \"!../../../node_modules/vue-loader/lib/runtime/componentNormalizer.js\"\nvar component = normalizer(\n script,\n render,\n staticRenderFns,\n false,\n null,\n \"7ac3d989\",\n null\n \n)\n\nexport default component.exports","module.exports = \"\"","module.exports = __webpack_public_path__ + \"static/img/11.021d7bfa.png\";","module.exports = \"\"","module.exports = \"\"","module.exports = \"\"","module.exports = __webpack_public_path__ + \"static/img/8.015eb8a3.png\";","module.exports = \"\"","export * from \"-!../../../node_modules/mini-css-extract-plugin/dist/loader.js??ref--10-oneOf-1-0!../../../node_modules/css-loader/dist/cjs.js??ref--10-oneOf-1-1!../../../node_modules/vue-loader/lib/loaders/stylePostLoader.js!../../../node_modules/postcss-loader/src/index.js??ref--10-oneOf-1-2!../../../node_modules/less-loader/dist/cjs.js??ref--10-oneOf-1-3!../../../node_modules/cache-loader/dist/cjs.js??ref--0-0!../../../node_modules/vue-loader/lib/index.js??vue-loader-options!./pictureAnalysis.vue?vue&type=style&index=0&id=7ac3d989&scoped=true&lang=less&\"","module.exports = __webpack_public_path__ + \"static/img/9.f4d907ac.png\";","module.exports = \"\"","module.exports = __webpack_public_path__ + \"static/img/3.24fefc29.png\";","module.exports = __webpack_public_path__ + \"static/img/1.974116f8.png\";"],"sourceRoot":""}